36 resultados para Lactic-acid Bacteria

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to enumerate and identify lactic acid bacteria and Enterobacteriaceae from spoiled and nonspoiled chilled vacuum-packaged beef and determine their potential to cause blown pack spoilage. These microbial groups were also enumerated in nonspoiled samples and detected in abattoir samples. The potential of isolates to cause blown pack spoilage of vacuum-packaged beef stored at chilled temperature (4 degrees C) and abuse temperature (15 degrees C) was investigated. Populations of lactic acid bacteria in exudate of spoiled and nonspoiled samples were not significantly different (P > 0.05), whereas the number of lactic acid bacteria on the surface was significantly higher (P < 0.05) in spoiled samples as compared to nonspoiled samples. The population of Enterobacteriaceae species in exudate and on the surface of samples were significantly higher (P < 0.05) in spoiled packs in comparison with nonspoiled packs. Results of the deterioration potential showed that blown pack spoilage was noticeable after 7 days at 15 degrees C and after 6 weeks at 4 degrees C for samples inoculated with Hafnia alvei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactic acid bacteria are used in food production to provide desirable organoleptic characteristics, and can also act as biopreservatives, controlling the growth of undesirable microorganisms. In this study, we examined the antimicrobial action of Lactobacillus sakei 2a and its concentrated acid extract against food-borne Salmonella spp. The extract was obtained by acid extraction from culture broth of L. sakei 2a and was designated extract 2a. We determined that extract 2a had significant activity (approximately 500 AU ml(-1)). We used different antimicrobial substances alone or in combination with extract 2a to evaluate the inhibitory activity of the various treatments on a pool of five Salmonella strains. The pathogen Listeria monocytogenes Scott A Cm-r Em(r) was used as an indicator strain of inhibitory activity. In summary, all antimicrobials substances that were tested showed an inhibitory effect against the growth of Salmonella, andthis action was enhanced in the presence of extract 2a. Moreover, among the treatments applied, the combination of extract 2a and 0.1% lactic acid exhibited the most potent inhibitory effect towards the pool of Salmonella strains. Our findings indicate that L. sakei 2a and extract 2a, especially in combination with other antimicrobials, present potential technological application in the control of salmonellae in foods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposite fibers based on multi-walled carbon nanotubes (MWCNT) and poly(lactic acid) (PLA) were prepared by solution blow spinning (SBS). Fiber morphology was characterized by scanning electron microscopy (SEM) and optical microscopy (OM). Electrical, thermal, surface and crystalline properties of the spun fibers were evaluated, respectively, by conductivity measurements (4-point probe), thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), contact angle and X-ray diffraction (XRD). OM analysis of the spun mats showed a poor dispersion of MWCNT in the matrix, however dispersion in solution was increased during spinning where droplets of PLA in solution loaded with MWCNT were pulled by the pressure drop at the nozzle, producing PLA fibers filled with MWCNT. Good electrical conductivity and hydrophobicity can be achieved at low carbon nanotube contents. When only 1 wt% MWCNT was added to low-crystalline PLA, surface conductivity of the composites increased from 5 x 10(-8) to 0.46 S/cm. Addition of MWCNT can slightly influence the degree of crystallinity of PLA fibers as studied by XRD and DSC. Thermogravimetric analyses showed that MWCNT loading can decrease the onset degradation temperature of the composites which was attributed to the catalytic effect of metallic residues in MWCNT. Moreover, it was demonstrated that hydrophilicity slightly increased with an increase in MWCNT content. These results show that solution blow spinning can also be used to produce nanocomposite fibers with many potential applications such as in sensors and biosensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the chemical composition, fermentation patterns and aerobic stability of sugarcane silages with addition of amino acid production (monosodium glutamate) by-product (APB) and microbial inoculants. Mature sugarcane was chopped and ensiled in laboratory silos (n = 4/treatment) without additives (control) and with APB (10 g/kg), Pioneer 1174® (PIO, 1.0 mg/kg, Lactobacillus plantarum + Streptoccoccus faecium, Pioneer), Lalsil Cana (2.0 mg/kg, Lactobacillus buchineri, Lallemand) or Mercosil Maís 11C33® (1.0 mg/kg, Lactobacillus buchineri + Lactobacillus plantarum + Streptoccoccus faecium, Timac Agro). Fresh silage and silage liquor samples were obtained to assess pH, chemical composition and organic acid concentrations. Silage temperature was recorded throughout seven days to evaluate aerobic stability. The addition of APB decreased lactic acid levels, increased pH and N-NH3 and did not alter ethanol, acetic and butyric acids concentrations or dry matter (DM) losses. Microbial inoculants enhanced acetic acid levels, although only Pioneer 1174® and Mercosil Maís 11C33® lowered ethanol, butyric acid and DM losses. The addition of APB increased CP content and did not modify DM, soluble carbohydrates contents or in vitro dry matter digestibility. Additives did not alter silage maximum temperature or temperature increasing rate; however, Pioneer 1174® and Mercosil Maís 11C33® increased the time elapsed to reach maximum temperature. Monosodium glutamate production by-product does not alter fermentation patterns or aerobic stability of sugarcane silages, whereas homofermentative bacteria can provide silages of good quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth potential (delta) is defined as the difference between the population of a microorganism at the end of shelf-life of specific food and its initial population. The determination of 6 of Salmonella and Listeria monocytogenes in RTE vegetables can be very useful to determine likely threats to food safety. However, little is known on the behavior of these microorganisms in several RTE vegetables. Therefore, the aim of this study was to determine the delta of both pathogens in nine different types of RTE vegetables (escarole, collard green, spinach, watercress, arugula, grated carrot, green salad, and mix for yakisoba) stored at refrigeration (7 degrees C) and abuse temperature (15 degrees C). The population of aerobic microorganisms and lactic acid bacteria, including those showing antimicrobial activity has been also determined. Results indicated that L monocytogenes was able to grow (delta >= 0.5 log(10)) in more storage conditions and vegetables than Salmonella. Both microorganisms were inhibited in carrots, although a more pronounced effect has been observed against L monocytogenes. The highest 5 values were obtained when the RTE vegetables were stored 15 degrees C/6 days in collard greens (delta=3.3) and arugula (delta=3.2) (L monocytogenes) and arugula (delta=4.1) and escarole (delta=2.8) (Salmonella). In most vegetables and storage conditions studied, the counts of total aerobic microorganisms raised significantly independent of the temperature of storage (p<0.05). Counts of lactic acid bacteria were higher in vegetables partially or fully stored at abuse temperature with recovery of isolates showing antimicrobial activity. In conclusion, the results of this study show that Salmonella and L monocytogenes may grow and reach high populations in RTE vegetables depending on storage conditions and the definition of effective intervention strategies are needed to control their growth in these products. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims To provide molecular and phenotypical characterization of Enterococcus isolates obtained from raw milk and cheese, regarding their bacteriocinogenic and virulence activity. Methods and Results Forty-three bacteriocinogenic enterococci isolates were identified by 16s rDNA, fingerprinted by RAPD-PCR analysis and tested by PCR for the presence of genes for lantibiotics (lanM, lanB and lanC) and enterocins (entA, entB, entP, entL50AB and entAS48) and by phenotypical methods for bacteriocin production and inhibitory spectrum. Also, the virulence of the isolates was evaluated by PCR for genes gelE, hyl, asa1, esp, cylA, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc and by phenotypical tests for gelatinase, lipase, DNAse and a- and beta-haemolysis. Most isolates (93.0%) harboured at least one lantibiotic or enterocin gene and were positive for several tested virulence genes, mainly asa1 (100%), gelE (93.0%) and efaA (83.7%). 53.5% of the isolates presented beta-haemolysis. Conclusions Enterococcus spp. isolates presented an interesting potential application for food preservation because of bacteriocin production; however, virulence-related genes were identified in all RAPD profiles. Significance and Impact of the Study The study demonstrated the contradictory characteristics of the tested Enterococcus isolates: they presented a good potential for application in food biopreservation but contained several virulence factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strain ST211CH, identified as a strain of Enterococcus faecium, isolated from Lombo produced a bacteriocin that inhibited the growth of Enterococcus spp., Listeria spp., Klebsiella spp., Lactobacillus spp., Pseudomonas spp., Staphylococcus spp. and Streptococcus spp. The mode of action of the bacteriocin named as bacteriocin ST211Ch was bactericidal against Enterococcus faecalis ATCC19443. As determined by Tricine-SDS-PAGE, the approximate molecular mass of the bacteriocin was 8.0 kDa. Loss in antimicrobial activity was recorded after treatment with proteolytic enzymes. Maximum activity of bacteriocin ST211Ch was measured in broth cultures of E. faecium strain ST211Ch after 24 h; thereafter, the activity was reduced. Bacteriocin ST211Ch remained active after exposure to various temperatures and pHs, as well as to Triton X-100, Tween-80, Tween-20, sodium dodecyl sulfate, NaCl, urea and EDTA. Effect of media components on production of bacteriocin ST211Ch was also studied. On the basis of PCR reactions targeting different bacteriocin genes, i.e. enterocins, curvacins and sakacins, no evidences for the presence of these genes in the total DNA of E. faecium strain ST211Ch was obtained. The bacterium most probably produced a bacteriocin different from those mentioned above. Based on the antimicrobial spectrum, stability and mode of action of bacteriocin ST211CH, E. faecium strain ST211Ch might be considered as a potential candidate with beneficial properties for use in biopreservation to control food spoilage bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Goat breeding in Sardinia constitutes an important source of income for farming and shepherding activities. In this study 170 LAB strains were isolated from Sardinian goat's milk and tested for bacteriocins production against several food-borne pathogenic microorganisms. Four isolates (SD1, SD2, SD3 and SD4) were selected for their effective inhibition on Listeria monocytogenes. The strains were classified as members of Enterococcus genus, according to their biochemical and physiological characteristics, and then genetically identified as Enterococcus faecium. In MRS broth at 37 degrees C, bacteriocins SD1 and SD2 were produced at much higher levels (51200 AU/ml) compared to bacteriocin SD3 (3200 AU/ml) and bacteriocin SD4 (800 AU/ml). Their peptides were inactivated by proteolytic enzymes, but not when treated with alpha-amylase, catalase and lipase. The four bacteriocins remained stable at pH from 2.0 to 12.0, after exposure to 100 degrees C for 120 min and were not affected by the presence of surfactants and salts (N-Laourylsarcosine, NaCl, SDS, Triton X-100, Tween 20, Tween 80 and urea). Their molecular size was determined to be approximately 5 kDa by tricine-SDS-PAGE. Since the strains exhibited a strong antimicrobial activity against 21 L monocytogenes strains and 6 Salmonella spp. isolates, they should be considered as potential bio-preservatives cultures for fermented food productions. Moreover, due to their technological features, the four strains could be taken in account for using as adjunct NSLAB (non-starter lactic acid bacteria) rather than as starter culture. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several strains of Enterococcus spp. are capable of producing bacteriocins with antimicrobial activity against important bacterial pathogens in dairy products. In this study, the bacteriocins produced by two Enterococcus strains (Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch), isolated from cheeses, were characterized and tested for their capability to control growth of Listeria monocytogenes 426 in experimentally contaminated fresh Minas cheese during refrigerated storage. Both strains were active against a variety of pathogenic and non-pathogenic microorganisms and bacteriocin absorption to various L. monocytogenes, Enterococcus faecalis ATCC 19443 and Lactobacillus sakei ATCC 15521 varied according to the strain and the testing conditions (pH, temperature, presence of salts and surfactants). Growth of L. monocytogenes 426 was inhibited in cheeses containing E. mundtii CRL35 up to 12 days at 8 degrees C, evidencing a bacteriostatic effect. E. faecium ST88Ch was less effective, as the bacteriostatic affect occurred only after 6 days at 8 degrees C. In cheeses containing nisin (12.5 mg/kg), less than one log reduction was observed. This research underlines the potential application of E. mundtii CRL35 in the control of L. monocytogenes in Minas cheese. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactic acid bacteria (LAB) are an attractive and safe alternative for the expression of heterologous proteins, as they are nonpathogenic and endotoxin-free organisms. Lactococcus lactis, the LAB model organism, has been extensively employed in the biotechnology field for large-scale production of heterologous proteins, and its use as a "cell factory" has been widely studied. We have been particularly interested in the use of L. lactis for production of heat shock proteins (HSPs), which reportedly play important roles in the initiation of innate and adaptive immune responses. However, this activity has been questioned, as LPS contamination appears to be responsible for most, if not all, immunostimulatory activity of HSPs. In order to study the effect of pure HSPs on the immune system, we constructed recombinant L. lactis strains able to produce and properly address the Mycobacterium leprae 65-kDa HSP (Hsp65) to the cytoplasm or to the extracellular medium, using a xylose-induced expression system. Approximately 7 mg/L recombinant Hsp65 was secreted. Degradation products related to lactococcal HtrA activity were not observed, and the Limulus amebocyte lysate assay demonstrated that the amount of LPS in the recombinant Hsp65 preparations was 10-100 times lower than the permitted levels established by the U. S. Food and Drug Administration. These new L. lactis strains will allow investigation of the effects of M. leprae Hsp65 without the interference of LPS; consequently, they have potential for a variety of biotechnological, medical and therapeutic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactobacillus sakei 1 is a food isolate that produces a heat-stable antimicrobial peptide (sakacin 1, a class ha bacteriocin) inhibitory to the opportunistic pathogen Listeria monocytogenes. Bacterial isolates with antimicrobial activity may be useful for food biopreservation and also for developing probiotics. To evaluate the probiotic potential of L. sakei I, it was tested for (i) in vitro gastric resistance (with synthetic gastric juice adjusted to pH 2.0, 2.5, or 3.0); (ii) survival and bacteriocin production in the presence of bile salts and commercial prebiotics (inulin and oligofructose); (iii) adhesion to Caco-2 cells; and (iv) effect on the adhesion of L. monocytogenes to Caco-2 cells and invasion of these cells by the organism. The results showed that L. sakei I survival in gastric environment varied according to pH, with the maximum survival achieved at pH 3.0, despite a 4-log reduction of the population after 3 h. Regarding the bile salt tolerance and influence of prebiotics, it was observed that L. sakei 1 survival rates were similar (P > 0.05) for all de Man Rogosa Shame (MRS) broth formulations when tests were done after 4 h of incubation. However, after incubation for 24 h, the survival of L. sakei 1 in MRS broth was reduced by 1.8 log (P < 0.001), when glucose was replaced by either inulin or oligofructose (without Oxgall). L. sakei 1 was unable to deconjugate bile salts, and there was a significant decrease (1.4 log) of the L. sakei 1 population in regular MRS broth plus Oxgall (P < 0.05). In spite of this, tolerance levels of L. sakei 1 to bile salts were similar in regular MRS broth and in MRS broth with oligofructose. Lower bacteriocin production was observed in MRS broth when inulin (3,200 AU/ml) or oligofructose (2,400 AU/ml) was used instead of glucose (6,400 AU/ml). L. sakei I adhered to Caco-2 cells, and its cell-free pH-neutralized supernatant containing sakacin I led to a significant reduction of in vitro listerial invasion of human intestinal Caco-2 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolic studies are very important to improve quality of functional dairy products. For this purpose, the behaviors of pure cultures of Streptococcus thermophilus (St) and Lactobacillus rhamnosus (Lr) as well a co-culture of them (St-Lr) were investigated during skim milk fermentation, and the inulin effect as prebiotic was assessed. Lr was able to metabolize 6 g/100 g more galactose than St and St-Lr. Final lactic acid production by Lr was higher (9.8 g/L) compared to St (9.1 g/L) and St-Lr (9.1 g/L). Acetic acid concentration varied from 0.8 g/L (St-Lr) to 1.5 g/L (Lr) and that of ethanol from only 0.2 g/L (St-Lr) to 0.4 g/L (Lr), which suggests the occurrence in Lr of a NADH oxidase activity and citrate co-metabolization via pyruvate, both dissipating a part of the reducing power. Diacetyl and acetoin accumulated at the highest levels (18.4 and 0.8 mg/L, respectively) with St-Lr, which suggests possible synergistic interactions between these microorganisms as well as the Lr capability of co-metabolizing citrate in the presence of lactose. Inulin stimulated both biomass growth and levels of all end-products, as the likely result of fructose release from its partial hydrolysis and subsequent metabolization as an additional carbon and energy source. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To shed light on the interactions occurring in fermented milks when using co-cultures of Streptococcus thermophilus with Lactobacillus bulgaricus (StLb) or Lactobacillus acidophilus (StLa), a new co-metabolic model was proposed and checked either in the presence of Inulin as a prebiotic or not. For this purpose, the experimental data of concentrations of substrates and fermented products were utilized in balances of carbon, reduction degree and ATP. S. thermophilus exhibited always quicker growth compared to the other two microorganisms, while the percentage of lactose fermented to lactic acid, that of galactose metabolized, and the levels of diacetyl and acetoin formed strongly depended on the type of co-culture and the presence of inulin. The StLb co-culture led to higher acetoin and lower diacetyl levels compared to StLa, probably because of more reducing conditions or limited acetoin dehydrogenation. Inulin addition to StLa suppressed acetoin accumulation and hindered that of diacetyl, suggesting catabolite repression of alpha-acetolactate synthase expression in S. thermophilus. Both co-cultures showed the highest ATP requirements for biomass growth and maintenance at the beginning of fermentation, consistently with the high energy demand of enzyme induction during lag phase. Inulin reduced these requirements making biomass synthesis and maintenance less energy-consuming. Only a fraction of galactose was released from lactose, consistently with the galactose-positive phenotype of most dairy strains. The galactose fraction metabolized without inulin was about twice that in its presence, which suggests inhibition of the galactose transport system of S. thermophilus by fructose released from partial inulin hydrolysis. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nisin is a promising alternative to chemical preservatives for use as a natural biopreservative in foods. This bacteriocin has also potential biomedical applications. Lactic acid bacteria are commonly cultivated in expensive standard complex media. We have evaluated the cell growth and nisin production of Lactococcus lactis in a low-cost natural medium consisting of diluted skimmed milk in a 2-L bioreactor. The assays were performed at 30 degrees C for 56 h, at varying agitation speeds and airflow rates: (1) 200 rpm (no airflow, and airflow at 0.5, 1.0 and 2.0 L/min); (2) 100 rpm (no airflow, and airflow at 0.5 L/min). Nisin activity was evaluated using agar diffusion assays. The highest nisin concentration, 49.88 mg/L (3.3 log AU/mL or 1,995.29 AU/mL), was obtained at 16 h of culture, 200 rpm and no airflow (k(L)a = 5.29 x 10(-3)). These results show that a cultivation medium composed of diluted skimmed milk supports cell growth to facilitate nisin biosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the addition of passion fruit peel powder (PFPP) on the fermentation kinetics and texture parameters, post-acidification and bacteria counts of probiotic yoghurts made with two milk types were evaluated during 28 days of storage at 4 degrees C. Milks were fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (CY340), and one strain of probiotic bacteria: Lactobacillus acidophilus (L10 and NCFM), Bifidobacterium animalis subsp. lactis (8104 and HN019). The addition of PFPP reduced significantly fermentation time of skim milk co-fermented by the strains L10, NCFM and HN019. At the end of 28-day shelf-life, counts of B. lactis Bl04 were about 1 Log CFU mL(-1) higher in whole yoghurt fermented with PFPP regarding its control but, in general, the addition of PFPP had less influence on counts than the milk type itself. The titratable acidity in yoghurts with PFPP was significantly higher than in their respective controls, and in skim yoghurts higher than in the whole ones. The PFPP increased firmness, consistency (except for the NCFM strain of L acidophilus) and cohesiveness of all skim yoghurts. The results point out the suitability of using passion fruit by-product in the formulation of both skim and whole probiotic yoghurts. (C) 2012 Elsevier Ltd. All rights reserved.